
Customer: Medieval Empires
Date: November 14th, 2022

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for
Medieval Empires

Approved By Evgeniy Bezuglyi | SC Audits Department Head at Hacken OU

Type ERC20 token; Tokens sale

Platform EVM

Network Polygon

Language Solidity

Methodology Link

Website https://www.medievalempires.com/

Changelog 25.10.2022 – Initial Review
14.11.2022 - Second Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://www.medievalempires.com/

Table of contents
Introduction 4

Scope 4

Severity Definitions 6

Executive Summary 7

Checked Items 8

System Overview 11

Findings 12

Disclaimers 18

www.hacken.io
3

https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.8fxrxvs7dvhm
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.8fxrxvs7dvhm
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.hibdc7qpvu9g
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.hibdc7qpvu9g
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.2yl2jym0k9iy
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.e9evpg44u9v9
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.46cbde82d1gg

Introduction

Hacken OÜ (Consultant) was contracted by Medieval Empires (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of the Customer's smart
contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope

Repository https://github.com/moon-gaming/mee-governance-token/tree/b8540e7b8
8bd8877398a599e5d62c9294a981b0e

Commit b8540e7b88bd8877398a599e5d62c9294a981b0e

Docs/Whitepaper Whitepaper

Docs/Functional Whitepaper

Docs/Technical Technical description

Contracts File: ./contracts/token-distribution/SaleRounds.sol
SHA3:
d6411de43d4fba2026712f225ac0f3f14f41edd0075bf9a0418f36e3365cb392

File: ./contracts/token-distribution/TokenDistribution.sol
SHA3:
9a0b5a3e8d9ddb954b4c38592f4080d9539d30a9db824edb8f07417681fdfd2f

File: ./contracts/token/GovernanceToken.sol
SHA3:
ad832d958984e8f256c0f667a6f10cc602a0595a46a297b2bd702b116e94f708

File: ./contracts/utils/GameOwner.sol
SHA3:
c7a2c3c25bfa0032474538c359cf7e99396ddad979391247df87c323205a7542

Second review scope

Repository https://github.com/moon-gaming/mee-governance-token

Commit d941f0f37baf5890ac07769a016b7d0a4eb911ec

Docs/Whitepaper Whitepaper

Docs/Functional Whitepaper

Docs/Technical Technical description

Contracts File: ./contracts/token-distribution/SaleRounds.sol
SHA3:
5da6f7aee4e2655caae6e31cf426ed7aacb1e84ade569e2001745335b87bceba

www.hacken.io
4

https://whitepaper.medievalempires.com/medieval-empires-whitepaper/
https://whitepaper.medievalempires.com/medieval-empires-whitepaper/
https://whitepaper.medievalempires.com/hacken-mee-audit/governance-token-technical-docs/backend/governance-token-methods
https://whitepaper.medievalempires.com/medieval-empires-whitepaper/
https://whitepaper.medievalempires.com/medieval-empires-whitepaper/
https://whitepaper.medievalempires.com/hacken-mee-audit/governance-token-technical-docs/backend/governance-token-methods

File: ./contracts/token-distribution/TokenDistribution.sol
SHA3:
e78cc6ea3eb8811480d961d80e34bb323608dbff5031e7fad3d74e04ce1c5f56

File: ./contracts/token/GovernanceToken.sol
SHA3:
77fa5ec9917d71bf37d97c04195e0e28235be6b3220682ab7ad63fcca7f634d5

File: ./contracts/utils/GameOwner.sol
SHA3:
b17feeb4041115d3126ff88f80470a35e3e1510bae84c070e1427967d000a901

www.hacken.io
5

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions.

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot have a
significant impact on execution.

www.hacken.io
6

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 8 out of 10.

● Functional documentation is good.
● Technical documentation has not been updated with the new changes.

Code quality
The total Code Quality score is 8 out of 10.

● The code does not follow the official Solidity style guidelines.
● The development environment is configured.

Test coverage
Test coverage of the project is 74.36% (branch coverage).

● Deployment and basic user interactions are covered with tests.
● Some negative cases are not covered.
● Some functions are not tested.
● Interactions by several users are not tested thoroughly.

Security score
As a result of the audit, the code contains 1 high, 1 medium and 3 low
severity issues. The security score is 4 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 5.8.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

21 October 2022 13 1 3 3

14 November 2022 3 1 1 0

www.hacken.io
7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

Checked Items

We have audited the Customers' smart contracts for commonly known and more
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Passed

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Not Relevant

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

www.hacken.io
8

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Not Relevant

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Not Relevant

Presence of
unused
variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP standards
violation EIP EIP standards should not be violated. Passed

Assets
integrity Custom Funds are protected and cannot be

withdrawn without proper permissions. Passed

User Balances
manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

Token Supply
manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
customer.

Passed

www.hacken.io
9

https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style guide
violation Custom Style guides and best practices should

be followed. Failed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Failed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be 100%,
with both negative and positive cases
covered. Usage of contracts by multiple
users should be tested.

Failed

Stable Imports Custom
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
10

System Overview

Medieval Empire is a play to earn game offering a governance tokens sale
with the following contracts:

● GovernanceToken — simple ERC-20 token with a max supply fixed at
deployment.
It has the following attributes:

○ Name: AoE Governance Token
○ Symbol: MEE
○ Decimals: 18
○ Max supply: 3b tokens.

● SaleRounds — a contract that holds the logic of the token sales for
each round.

● TokenDistribution — a utility contract about round types.
● GameOwner - a contract that handles the gameOwner role.

Privileged roles
● The game owner can add or delete addresses to the distribution lists

for private and seed rounds. This is necessary to handle off-chain
management.

● Vesting has to be started by the Game Owner.

Risks
● The technical documentation says: “if you already joined a

reservation, you cannot join any other rounds and you are going to
get an error like 'User has already registered for a different
round'”. This verification is done when the user tries to join the
reservation but not when the game owner adds the user to the
whitelists. Therefore, a user can be on the whitelist for multiple
rounds.

● advisor, exchanges, play and earn, public, team, treasury and social
rounds tokens allocation are done to one address (for each round).
This means that the members of the team can not claim their tokens by
themself. The owner of the teamWalletAddress is then responsible for
sending the tokens to the members of the team. This can create
conflicts in the case of a member of the team leaving the project.
The same applies for advisors.

● The public sale is not in the scope of this audit. Allocated tokens
are sent to an external address, but no verification can be made
about what happens then.

● The project owners indirectly or directly control the entirety of the
token supply and vesting.

www.hacken.io
11

Findings

Critical

1. Requirements Violation

The vesting and cliff periods for several rounds (SEED, PRIVATE,
PUBLIC, ADVISOR, EXCHANGES and PLAYANDEARN) are in days when they
should be in months, according to the documentation.

Path: ./contracts/SaleRounds.sol : constructor()

Recommendation: The code should not violate requirements provided by
the Customer.

Status: Fixed (d941f0f37baf5890ac07769a016b7d0a4eb911ec)

2. Requirements Violation

During the seed and the private rounds, users can reserve and claim
tokens without paying.

Path: ./contracts/SaleRounds.sol

Recommendation: The code should not violate requirements provided by
the Customer.

Status: Fixed (d941f0f37baf5890ac07769a016b7d0a4eb911ec)

3. Requirements Violation, Funds Lock

The token allocation for ADVISOR is not implemented. They can neither
reserve nor claim their tokens.

Path: ./contracts/SaleRounds.sol

Recommendation: The code should not violate requirements provided by
the Customer.

Status: Fixed (d941f0f37baf5890ac07769a016b7d0a4eb911ec)

High

1. Highly Permissive Role Access

The game owner can set the cliff time for any round. This should not
be possible as the cliff is determined in the whitepaper and should
not be modifiable.

Path: ./contracts/SaleRounds.sol : function setCliffTime()

Recommendation: Remove mentioned functionality from the contract.

Status: Fixed (d941f0f37baf5890ac07769a016b7d0a4eb911ec)

2. Requirements Violation

TREASURY token distribution cliff is set to 4 months when the
documentation sets it to 2 months.

www.hacken.io
12

Path: ./contracts/SaleRounds.sol : constructor()

Recommendation: The code should not violate requirements provided by
the Customer.

Status: Fixed (d941f0f37baf5890ac07769a016b7d0a4eb911ec)

3. Requirements Violation

EXCHANGES token distribution cliff is set to 3 months in the
whitepaper. The distribution in the constructor follows this
requirement, but tokens are minted without any checks breaking this
rule. Comments in the code says “NO VESTING TIME SO DIRECT MINTING”

Path: ./contracts/SaleRounds.sol : constructor(), function
initialReserveAndMint()

Recommendation: The code should not violate requirements provided by
the Customer.

Status: Fixed (d941f0f37baf5890ac07769a016b7d0a4eb911ec)

4. Requirements Violation

The vesting granularity for several rounds (SEED, PRIVATE, PUBLIC,
PLAYANDEARN, EXCHANGES and TREASURY) are in months when they should
be in days, according to the documentation.

Path: ./contracts/SaleRounds.sol : constructor()

Recommendation: The code should not violate requirements provided by
the Customer.

Status: New

Medium

1. Missing Events Emit on Changing Important Values

It is recommended to emit events after changing important values.
This will make it easy for everyone to notice such changes.

Paths: ./contracts/GameOwner.sol : function setGameOwnerAddress()

./contracts/SaleRounds.sol : function reserveTokens(), setCliffTime()

Recommendation: Implement event emits after changing contract values.

Status: Fixed (d941f0f37baf5890ac07769a016b7d0a4eb911ec)

2. Documentation Contradiction

The project should be consistent and contain no self-contradictions.

Technical documentation has not been updated after implementing
modifications in the code.

Path: Technical Documentation

www.hacken.io
13

Recommendation: Update technical documentation to follow the new
implementation.

Status: New

Low

1. Requirements Noncompliance

Max supply is 3b tokens according to the whitepaper, 8b according to
the technical documentation. The code implements 3b.

Path: ./contracts/SaleRounds.sol

Recommendation: Modify the technical documentation to align with the
whitepaper and the code.

Status: Fixed (d941f0f37baf5890ac07769a016b7d0a4eb911ec)

2. Requirements Noncompliance

The technical documentation says: “Multiple rounds cannot be active
at the same time, only 1 round is allowed at a time.” But if rounds
can be set as active, there is no option to set them to inactive when
the round has finished.

Path: ./contracts/SaleRounds.sol

Recommendation: As rounds have to remain active for tokens to be
claimable after vesting period, the documentation should be changed.
Another option is to allow tokens to be claimed when the distribution
has started, even if the round is inactive. In this case, there
should be an option to set the round as inactive and a check that no
rounds are active before activating a new round.

Status: Fixed (d941f0f37baf5890ac07769a016b7d0a4eb911ec)

3. Floating Pragma

The project uses floating pragmas ^0.8.17.

Paths: ./contracts/GovernanceToken.sol

./contracts/SaleRounds.sol

./contracts/TokenDistribution.sol

./contracts/GameOwner.sol

Recommendation: Consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment.

Status: Fixed (d941f0f37baf5890ac07769a016b7d0a4eb911ec)

4. Functions that Can Be Declared External

In order to save Gas, public functions that are never called in the
contract should be declared as external.

www.hacken.io
14

Paths: ./contracts/SaleRounds.sol : function initialReserveAndMint(),
setActiveRound(), addAddressForDistribution(),
deleteAddressForDistribution(), getAddressList(), reserveTokens(),
mintTokensForPublic(), claimTokens(), getTotalClaimedForAllRounds(),
getTotalRemainingForAllRounds(), getTotalRemainingForSpecificRound(),
getTotalPending(), setCliffTime(), getCliffTime()

./contracts/GameOwner.sol : function setGameOwnerAddress(),
getGameOwnerAddress()

Recommendation: Use the external attribute for functions never called
from the contract.

Status: Fixed (d941f0f37baf5890ac07769a016b7d0a4eb911ec)

5. Missing Zero Address Validation

Address parameters are being used without checking against the
possibility of 0x0.

Paths: ./contracts/GameOwner.sol : constructor, function
setGameOwnerAddress()

./contracts/SaleRounds.sol : function initialReserveAndMint()

Recommendation: Implement zero address checks.

Status: Fixed (d941f0f37baf5890ac07769a016b7d0a4eb911ec)

6. Assert Violation

Properly functioning code should never reach a failing assert
statement.

Path: ./contracts/SaleRounds.sol : function initialReserveAndMint()

Recommendation: Add a check for the correct walletAddresses array.

Status: Fixed (d941f0f37baf5890ac07769a016b7d0a4eb911ec)

7. Unindexed Events

Having indexed parameters in the events makes it easier to search for
these events using indexed parameters as filters.

Path: ./contracts/SaleRounds.sol : events : ReservEvent, ClaimEvent.

Recommendation: Use the “indexed” keyword for the event parameters.

Status: Fixed (d941f0f37baf5890ac07769a016b7d0a4eb911ec)

8. Boolean Equality

Boolean constants can be used directly and do not need to be compared
to true or false.

Path: ./contracts/SaleRounds.sol : function setActiveRound(),
isEligibleToReserveToken(), isRoundActive()

Recommendation: Remove boolean equality.
www.hacken.io

15

Status: Fixed (d941f0f37baf5890ac07769a016b7d0a4eb911ec)

9. Misleading Error Messages

In function reserveTokensInternal, the require error message “total
remaining seed amount is not enough” may apply for other rounds than
seed.

Path: ./contracts/SaleRounds.sol : function getBalanceToRelease()

Recommendation: Refactor the message in require conditions to fit
code behavior.

Status: Fixed (d941f0f37baf5890ac07769a016b7d0a4eb911ec)

10. Redundant Require Statement

In function getBalanceToRelease require statement (unClaimedBalance
>= 0) is redundant due to uint being always >= 0.

This can lead to higher Gas taxes.

Path: ./contracts/SaleRounds.sol : function getBalanceToRelease()

Recommendation: Remove redundant code.

Status: Fixed (d941f0f37baf5890ac07769a016b7d0a4eb911ec)

11. Unused Variable

The variable MAX_UINT256 is never used.

Path: ./contracts/GovernanceToken.sol

Recommendation: Remove unused variable.

Status: Fixed (d941f0f37baf5890ac07769a016b7d0a4eb911ec)

12. Unused Function

The functions created but not used in the project should be deleted.
This will make a more Gas efficient contract.

Path: ./contracts/GameOwner.sol : function isGameOwnerAddress()

Recommendation: Remove unused function or use it in the modifier
onlyGameOwner() which uses the same code.

Status: Fixed (d941f0f37baf5890ac07769a016b7d0a4eb911ec)

13. Style Guide Violation

Inside each contract, use the following order:

1. Type declarations
2. State variables
3. Events
4. Modifiers
5. Functions

www.hacken.io
16

Functions should be grouped according to their visibility and
ordered:

1. constructor
2. receive function (if exists)
3. fallback function (if exists)
4. external
5. public
6. internal
7. private

Within a grouping, place the view and pure functions last.

Paths: ./contracts/SaleRounds.sol

./contracts/GovernanceToken.sol

Recommendation: Follow the official Solidity guidelines.

Status: New

14. Unused Function

The function mintTokenForPublicSale is private and is never called.
This function is not needed anymore as tokens for public sale are
minted in initialReserveAndMint.

Path: ./contracts/SaleRounds.sol : function mintTokenForPublicSale()

Recommendation: Remove unused function.

Status: New

15. Duplicate Code

The modifiers isInvestRound and claimableRound are duplicated.

The modifier isEligibleToReserveToken is a combination of
isInvestRound and onlyGameOwner. As it is used with isInvestRound, it
is redundant and should be replaced by onlyGameOwner.

Path: ./contracts/SaleRounds.sol : isEligibleToReserveToken,
isInvestRound, claimableRound.

Recommendation: Remove duplicate code.

Status: New

www.hacken.io
17

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted to and reviewed, so it may not be relevant after any
modifications. Do not consider this report as a final and sufficient
assessment regarding the utility and safety of the code, bug-free status,
or any other contract statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, Consultant
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io
18

